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Universality of the thermodynamic Casimir effect
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Recently a nonuniversal character of the leading spatial behavior of the thermodynamic Casimir force has
been reported@X. S. Chen and V. Dohm, Phys. Rev. E66, 016102~2002!#. We reconsider the arguments
leading to this observation and show that there is no such leading nonuniversal term in the systems with
short-ranged interactions if one treats properly the effects generated by a sharp momentum cutoff in the Fourier
transform of the interaction potential. We also conclude that lattice and continuum models then produce results
in mutual agreement independent of the cutoff scheme, contrary to the aforementioned report. All results are
consistent with theuniversalcharacter of the Casimir force in the systems with short-ranged interactions. The
effects due to dispersion forces are discussed for the systems with periodic or realistic boundary conditions. In
contrast to the systems with short-ranged interactions, forL/j@1, one observes leading finite-size contribu-
tions governed by power laws inL due to the subleading long-ranged character of the interaction, whereL is
the finite system size andj is the correlation length.
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I. INTRODUCTION

According to our present understanding, the Casimir
fect is a phenomenon common to all systems character
by fluctuating quantities on which external boundary con
tions are imposed.

The confinement of quantum-mechanical vacuum fluct
tions of the electromagnetic field causes long-ranged fo
between two conducting uncharged plates, which is kno
as the~quantum-mechanical! Casimir effect@1–4#. The cor-
responding force between the plates is called the Cas
force. In this form, the phenomenon was predicted in 19
@1# by Casimir.

The confinement of critical fluctuations of an order p
rameter also induces long-ranged forces between the sy
boundaries@5–7#. This is known as the statistical-mechanic
~thermodynamic! Casimir effect. In this form, the effect wa
discussed by Fisher and de Gennes@5# already in 1978.

The Casimir forces arise from the influence of one port
of a system, via fluctuations, on another portion some
tance away.

The best known example of a Casimir force is the van
Waals interaction between neutral molecules. In this case
correlations between the fluctuations are mediated by p
tons, i.e., massless excitations of the electromagnetic fi
When the system is a thermodynamic one, important
amples of such massless excitations include Goldst
bosons and order parameter fluctuations at critical points

The quantum-mechanical Casimir effect has been exp
mentally verified with impressive experimental precision@8#
~see also Refs.@9# and @10#!. One uses atomic force micro
scope techniques and measures the force between a m
lized sphere and a plate. Since it turns out to be very diffic
to keep two plates parallel with the required accuracy, th
is only one recent experiment@11# in which the original the-
oretical parallel plate setup as studied by Casimir was u
In this experiment, it has been found that the measured
1063-651X/2003/67~6!/066120~11!/$20.00 67 0661
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simir force agrees with the predicted one within 15% ac
racy. It is interesting to note that at distances of the orde
10 nm between the plates, the force produces a pressu
the order of 1 atm. Therefore, the Casimir effect is cons
ered to be very important for the design of nanoscale dev
~see, e.g., Ref.@12# and references therein!.

In statistical mechanics, the Casimir force is usually ch
acterized by the excess free energy coming from thefinite-
size contributionsto the free energy of the system. The pa
allel plate or film geometry turns out to be of great practic
importance for the experimental setups.

A useful model for the investigation of generic finite-siz
effects is given by anO(n)-symmetric spin system (n>1),
confined to a film geometry (L3`2) with periodic boundary
conditionst. Models of this sort serve as theoretical descr
tions of magnets or fluids confined between two para
plates of infinite area. The Casimir force per unit area
these systems is defined as

FCasimir
t ~T,L !52

] f ex
t ~T,L !

]L
, ~1!

where f ex
t (T,L) is the excess free energy

f ex
t ~T,L !5 f t~T,L !2L f bulk~T!. ~2!

Here f t(T,L) is the full free energy per unit area~and per
kBT) of such a system andf bulk is the bulk free energy den
sity.

According to the definition given by Eq.~1!, the thermo-
dynamic Casimir force is a generalized force conjugate to
distanceL between the boundaries of the system with t
property FCasimir

t (T,L)→0 for L→`. We are interested in
the behavior ofFCasimir

t when L@a, where a is a typical
microscopic length scale. In this limit, finite-size scalin
theory is applicable. Thesign of the Casimir force is of par-
ticular interest. It is supposed that if the boundary conditio
©2003 The American Physical Society20-1
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t are the same at both surfaces,FCasimir
t will be attractive

@13,14,16# ~strictly speaking, for an Ising-like system th
should hold above the wetting transition temperatureTw
@13,14,17#!. In the case of a fluid confined between identic
walls, this implies an attractive force between the walls
large separations. When the boundary conditionsdiffer be-
tween the confining surfaces, the Casimir force is expecte
be repulsive@13,15,16#. The current experimental situatio
will be discussed later in the paper. Here we only ment
that these experiments are in qualitative and, in some ca
even in quantitative agreement.

In this paper, we discuss the behavior of the thermo
namic Casimir force in systems with short ranged and w
subleading long-ranged~dispersion! forces, which are
present, e.g., in real fluids. Both interactions lead to the sa
universality class, provided that the dimensionalityd of the
system and the symmetry of the ordered state are the s
Despite this similarity we will see that, in comparison wi
systems with short-ranged forces, new important finite-s
contributions exist in systems with dispersion forces.
shall also discuss proper boundary conditions for the syst
with subleading long-ranged interactions, and we shall
consider several recent statements@18# for the behavior of
the finite-size free energy and the Casimir force in the s
tems with short-ranged interactions and with dispers
forces.

From the definition in Eqs.~1! and~2!, it is clear that one
needs to know the critical behavior of the free energy in
slab geometry in order to derive the behavior of the Casi
force. Based on numerous investigations, it has turned
that the thermodynamic behavior of a system near a sec
order phase transition exhibits scale invariance and uni
sality @19,20#. In order to set the stage for our consideratio
we first recall certain bulk properties.

A. Bulk systems

Scale invariance and universality hold for the singu
part of a thermodynamic function. For later reference,
quote the decomposition into a regular and a singular pa
the free energyf in units of kBTc and per unit volume of,
e.g., an Ising ferromagnet:

f ~ t,h!5 f reg~ t,h!1 f sing~ t,h!

5 f reg~ t,h!1utu22aA1F6~A2hutu2D!, ~3!

wheret5(T2Tc)/Tc:0 is the reduced temperature,h is the
external magnetic field,D is the critical exponent associate
with the magnetic field,a is the critical exponent of the
specific heat,A1 andA2 are nonuniversal~system dependent!
metric factors, andF6 are universal scaling functions.

In the scaling limit, the two-point correlation function i
zero field, which is of particular interest in the present co
text, has the form@21,22#

G~r ,t:0!5Dr 2(d221h)g6~r /j6! ~4!

with j6 as the correlation length given by
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j6~ t,h50!5j0
6utu2n, t→0. ~5!

The nonuniversal constantsD andj0
1 can be related toj0

2 ,
A1, and A2 via j0

1/j0
25Q1 , A15Q2(j0

1)2d, and A2

5Q3AD(j0
1)(d122h)/2 with Q1 , Q2, andQ3 being univer-

sal, which leads to the hyperuniversality hypothesis in
form of two-scale factor universality@23#. In the form given
above, Eqs.~4! and~5! are valid for Ising-like systems only
For O(n) models,n>2, one has in addition to take int
account thatj2(t<0)[`. The universal scaling function
g1(x) decays exponentially forx*1. The physical origin
for the onset of scale invariance can be traced back to
divergence of the correlation lengthj6 . Consensus has
emerged that these statements hold in systems governe
short-range interaction potentials, i.e., decaying expon
tially or being of a finite range.

If the exchange interaction in an Ising model on a latt
in d dimensions decays algebraically,

J~r !5
J

11~r /a!d1s
, r[ur u>a.0, ~6!

wherea is the lattice constant, the value of the decay exp
nents is crucial with respect to universality. Fors.2, the
leading thermodynamic critical behavior is characterized
the critical exponents and scaling functions for short-rang
interactions@24#. Mean-field theory holds ford.dc54 irre-
spective of the value ofs. For s,2, the upper critical di-
mension is reduced todc(s)52s @24,25#, and the values of
the critical exponents depend ons for s,d,dc(s)
@24,26,27#. The crossover from short-ranged to long-rang
critical behavior occurs fors522hsr(d), wherehsr(d) is
the critical exponent for the short-ranged system~for a given
fixed spatial dimensiond) @28–32#. This crossover has re
cently been reexamined numerically ind52 in Ref. @33#.

Fluids are governed by dispersion forces. In the sens
Eq. ~6!, dispersion~van der Waals! forces in d53 dimen-
sions are characterized bys53 in the nonretarded case an
by s54 in the retarded case. Therefore, the leading therm
dynamic critical behavior of a fluid is characterized by cri
cal exponents and scaling functions for short-ranged inte
tions and the contributions due to the power-law decay of
interaction potential lead to corrections to the asympto
scaling behavior. Thus fors.2 we refer to interaction po-
tentials governed by Eq.~6! as subleading long-ranged inte
actions.

As an illustration of this case, Fig. 1 displays schema
cally the two-point correlation functionG(r ,t). The univer-
sal decay ofG(r ,t) is governed by Eq.~4! only within the
critical regime. For distancesr smaller than the lower limit
of this regime, generically nonuniversal microscopic effe
govern the behavior of the correlation function. For distan
larger than the upper limit of this regime, the interacti
potential itself governs the further decay of the correlat
function. Note thatr * /j→` asT→Tc , i.e., the critical re-
gime expands as the critical point is approached@35–37#.
0-2
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The widening of the critical regime leads to the divergen
of the compressibilityk(t);*0

`dr r 2G(r ,t);utu2g, for t
→0.

For short-ranged interactions, one has to bear in mind
Eq. ~4! is also only valid within a critical regimer ,r sr* .
Exact results for the two-dimensional~2D! Ising model@38#
and mean-field results@39# suggest thatr sr* ;j2, whereas the
spherical model yields the estimater sr* ;j3 @40#. For r
@r sr* , the correlation function decays again exponentia
but it contains a nonuniversal prefactor@40#, i.e., theleading-
order behavior becomes nonuniversal. This demonstra
that in the case of short-ranged interactions, the width of
critical regime is much larger than for a corresponding s
tem with subleading long-ranged interactions.

B. Finite-size scaling

Finite-size scaling asserts that near the bulk critical te
peratureTc , the influence of a finite sample sizeL on the
critical phenomena is governed by universal finite-size s
ing functions that depend on the ratioL/j, so that the round-
ing of the thermodynamic singularities sets in forL/j
.O(1) @7,41–45#.

From the above discussion of the behavior ofG(r ,t), one
expects that the deviations from standard finite-size sca
behavior will be observed forL@r * , wherer * is a cross-
over length with the propertyr * @j. In particular, one has
r * ;j2 for the Ising model or within mean-field theory,r *

FIG. 1. Schematic view of the density-density correlation fun
tion G(r ,t) in a fluid governed by dispersion forces ind53. The
behavior is shown on various length scales, where the tilted do
slashes // indicate breaks in scale. For microscopic distances o
order of the particle diameters0, ‘‘packing’’ effects lead to oscil-
lations decaying exponentially@34#. Beyond a crossover regim
~not shown!, the correlation function decays according to the pow
law given in Eq.~4! as long asr !j. Beyond another crossover~not
shown! the further decay is exponential forr @j which finally
crosses over to the interaction dominated regime forr .r * , where
the ultimate decay of the correlation function follows the decay
the interaction potential;r 26 in the nonretarded regime and;r 27

in the retarded regime~not shown!. The behaviorr * ;j ln j of the
crossover distancer * @35–37# illustrates thatr * diverges more
strongly than the correlation lengthj in the vicinity of Tc , i.e., the
critical regime, in which the universal properties hold, expands aT
approachesTc .
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;j3 for the spherical model@40#, andr * ;j ln j for sublead-
ing long-ranged interactions@37,46#.

This view has recently been challenged by Chen a
Dohm @18#, who purportedly report, for the systems wi
short-ranged interactions, leading finite-size contributio
different from the ones expected from the above discuss
This would invalidate the current understanding of finite-s
scaling. In particular, these results can lead to the expecta
of a nonuniversalCasimir force atTc for a fluid between
parallel plates at a distanceL. If correct this would be of
major theoretical @6,48,49# and experimental interest@
50–52#. Specifically, based on the exact results for t
O(n)-symmetricf4 field theory in the large-n limit ~mean
spherical model!, the authors of Ref.@18# report the follow-
ing result for the singular partf s(t,L,L) of the finite-size
contribution f (t,L,L) to the free energy density of a syste
with periodic boundary conditions and purported sho
ranged interactions in 2,d,4:

f s~ t,L,L!5L22Ld22F~j21L21!1L2dXsr~L/j!. ~7!

The parameterL is an ultraviolet momentum cutoff and th
functionF has the propertyF(0).0. For the Casimir force
defined by

FCasimir~ t,L,L![2
]

]L
$L@ f ~ t,L,L!2 f ~ t,`,L!#%, ~8!

Eq. ~7! implies a leading nonuniversal~cutoff dependent!
nonscaling term;L22 in the behavior of the Casimir force
because the scaling functionXsr(x);exp(2x) when x@1
@7,41–43,45#. Therefore Eqs.~7! and ~8! would also imply
nonuniversalCasimir amplitudes

DCasimir~d!5Ld22F~0! ~9!

in d.2 dimensions.
In the following, we shall show that the results reported

Ref. @18# can be traced back to using a peculiar model
which the interactions are neither short ranged nor of
subleading long ranged type, so that the model does no
late to any physical realization. We find that if the periodic
and analyticity of the Fourier transformJ(k) of the interac-
tion J(r ) at the boundary of the Brillouin zone~in the case of
a lattice model!, and the analyticity ofJ(k) at the cutoffk
5L ~in the case of an off-lattice model! are preserved in the
theoretical analysis, then theL22 term in Eq. ~7! vanishes
identically. We also show that the presence or absence of
term doesnot depend on the range of the interactions. If t
above requirements forJ(k) at the boundary of the Brillouin
zone or atk5L are violated, a corresponding nonunivers
nonscaling term of orderL22 will be observed in the finite-
size behavior ofany thermodynamic function. A discussio
on the influence of the cutoff on the finite-size behavior
the susceptibility has already been presented in Ref.@46#; see
also the ‘‘note added in proof’’ of Ref.@54#. In Secs. II and
III, we present a general and unified approach that is
signed to avoid similar artificial effects; this should be use
also in the context of quantum phase transitions and fi
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theory. In Sec. III, we also summarize the present state
knowledge on the finite-size behavior of the systems w
subleading long-range interactions, focusing on the expe
behavior of the singular part of the free energy. One sho
distinguish between the cases~i! d1s,6 and ~ii ! d1s
56, which contains the physically most important case
dispersion forces ind53 with s53. In case~ii !, one ex-
pects additional logarithmic finite-size contributions. The p
per closes in Sec. IV with a summary and concluding
marks, where we also discuss possible boundary condit
for systems with subleading long-ranged interactions.

II. FINITE-SIZE BEHAVIOR OF THE FREE ENERGY
DENSITY

In this section, we present our critique of the finite-si
scaling analysis of the free energy and the Casimir fo
presented in Ref.@18#. As pointed out already, the statemen
of Ref. @18# are based on the exact results for t
O(n)-symmetricf4 field theory in the large-n limit ~mean
spherical model! with periodic boundary conditions.

A. Analytical properties

Before we turn to the finite-size analysis, we discu
briefly the consequences of the assumptions for the Fou
transform of the interactionJ(k) used in Ref.@18# for the
bulk properties of the model. For a system on a latti
J(k)5( rJ(r )exp(ik•r ), where the sum runs over the lattic
sites. For an off-lattice system, the sum has to be replace
the corresponding integral.

In Fig. 2, we compareJ(k) for a short-ranged~nearest-
neighbor! lattice model@see, cf. Eq.~22!# with the standard
k2 spectrum in the infrared limit for short-ranged interactio

FIG. 2. Dispersion relation 12J(k)/J(0) as function ofk for
nearest-neighbor interactions in one dimension~solid line! in com-
parison with ak2 spectrum with a sharp cutoff at the Brillouin zon
boundary, ford51 dimension, as implemented in Ref.@18# ~dashed
line!. The zone boundary is marked by the vertical dash-dotted
and a is the lattice constant. Note that the application of a sh
cutoff to a purek2 spectrum in the first Brillouin zone implies a
artificial cusplike nonanalyticity of the dispersion relation at t
zone boundaries. This is absent for the genuine short-ranged i
actions.
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in the spirit of Ref.@18# endowed with a cutoffL5p/a at
the boundaries6p/a of the first Brillouin zone in one di-
mension. The restriction to one dimension only simplifies
notation, and is not essential for the following argumen
From Fig. 2, it is obvious that the continuation of thek2

spectrum, which is correct only in the infrared limitk→0, to
the full Brillouin zone and its truncation at the zone boun
aries introduces a cusplike nonanalyticity into the spectru
This nonanalyticity is artificial and is not a generic feature
the short-ranged interactions. As we shall demonstrate be
this artificial choice is the reason for the nonscaling and n
universal finite-size effects;L22 reported in Ref.@18#. In
fact, the importance of the properties of the dispersion re
tion at the Brillouin zone boundary for the critical finite-siz
behavior of the free energy ind52 dimensions has alread
been mentioned by Cardy@see Eq.~3.12! of Ref. @55## in the
course of deriving the Casimir amplitudeDCasimir(2)
52pc/6 in d52 the for periodic boundary conditions
wherec is the central charge of the model under consid
ation ~e.g.,c51/2 for the critical 2D Ising model with short
ranged interactions!.

It is instructive to investigate the consequences o
nonanalytic spectrum of the kind displayed in Fig. 2 in re
space. According to Ref.@18#, the corresponding correlatio
function for r @j in d dimensions reads

G~r ,t !52Ld22~2prL!2(d11)/2
sin@Lr 2p~d21!/4#

11j22L22

1O„exp~2r /j!…. ~10!

Thus the correlation function decays according to a pow
law with the decay exponent (d11)/2 rather than exponen
tially. Furthermore, the correlation function oscillates with
period set by the inverse of the cutoffL. For separationsr
.r * ~see Fig. 1!, Eq. ~10! therefore implies that the interac
tion potential for a system with a truncatedk2 spectrum, as
shown in Fig. 2, should not only beleading long ranged
rather thanshort rangedor evensubleading long rangedin
2<d<4, but also containing both positive and negative co
tributions. Therefore, for all spatial dimensions of physic
relevance, the model investigated in Ref.@18# would appear
to correspond to a model with competing leading lon
ranged interactions in real space. For such a model,
finite-size scaling as developed for the systems with sh
ranged or subleading long-ranged interactions is not
pected to be applicable.

B. Finite-size properties of theO„n\`… model

We substantiate our view by turning to a detailed analy
of the finite-size behavior of the free energy and other th
modynamic functions, i.e., we provide an account of t
mathematical mechanism that produces the nonuniversal
non-scaling leading finite-size effects reported in Ref.@18#.

As a case study, we quote the expression for the total
energy density of a fully finite mean spherical model@the n
→` limit of an O(n) model# with nearest-neighbor interac

e
p
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tions of strengthJ on a hypercubic lattice, which is given b
@7#

b f ~K,huL ,L!5
1

2
supt.0H 2

h2

Kt
1

1

L13•••3Ld

3(
k

lnF t1(
j 51

d

2~12coskj !G2KtJ
1

1

2 F ln
K

2p
22dKG , ~11!

whereK5bJ andh is a properly normalized magnetic field
The parametert is related to the correlation lengthj via t
5j22 @47# which relatest also to the reduced temperaturet.
The relevant physical information of Eq.~11! is contained in
the sum over the wave vectorsk5(k1 , . . . ,kd) in the first
Brillouin zone of the simple cubic lattice. For gener
interaction potentials on general lattices, this sum invol
the dispersion relation v(k), where, e.g., v(k)
5( j 51

d 2(12coskj) for the nearest-neighbor interactions o
a simple cubic lattice@see Eq.~11! and, cf. Eq.~22!#. In order
to provide a general description of finite-size scaling of
free energy, we will therefore consider the quantity@7# @see
also Eq.~14! in Ref. @18##

Ud,s~t,L ,L!5
1

2L13•••3Ld
(
kPB

ln@t1v~k!# ~12!

as a function of the system sizeL , whereL5(L1 , . . . ,Ld)
denotes the set of lengths that determine the geometry o
system,L5(L1 , . . . ,Ld) is the set of cutoffs in reciproca
~i.e.,k) space, andt is a quantity proportional to the reduce
temperaturet, e.g., t5j22 for the mean spherical mode
with short-range interactions. For lattice systems,k belongs
to the first Brillouin zoneB and if the system is on a hype
cubic lattice, one hasL i5p/ai , whereai is the lattice spac-
ing along the directioni, i 51, . . . ,d. For off-lattice systems
the summation is carried out over those values,kPB, that
fulfill the requirements2L i<ki,L i , i 51,•••,d. How-
ever, for off-lattice systems, there is no obvious choice
the cutoff. One usually takesL.ã21, whereã is some fixed
characteristic microscopic length of the system. For a fluidã
can be taken to be the diameters0 of a fluid particle~see
also Fig. 1!. In Eq. ~12!, the subscripts characterizes the
range of the interaction. The fluctuation spectrumv(k) of
the order parameter is given as a linear function of the F
rier transformJ(k) of the interaction@see, cf. Eqs.~22! and
~23!#.

The formal expression given by Eq.~12!, on which our
specific considerations in this section are based, has w
spread applications. The expression in Eq.~12! always ap-
pears as the one-loop contribution to the free energy in fi
theoretic Ginzburg-Landau models@48#. The line of
arguments presented here is therefore of general importa
and is not limited to the specific model under considerat
here.
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For periodic boundary conditions,LiL i /(2p)[Mi are
integer numbers,i 51, . . . ,d, where) i 51, . . . ,dM i[N fixes
the number of degrees of freedom in the system. The va
of the componentski of the vector k are given by ki
52pmi /Li , with 2Mi<mi<Mi21, i 51,•••,d.

In order to analyze the sum in Eq.~12!, we use the Pois-
son summation formula

(
m5a

b

f ~m!5 (
n52`

` E
a

b

dmei2pmnf ~m!1
1

2
@ f ~a!1 f ~b!#.

~13!

After some algebra, one obtains

Ud,s~t,L ,L!5Ud,s~t,L!1DUd,s~t,L ,L!, ~14!

where

Ud,s~t,L!5
1

2~2p!dE2L1

L1
dm1•••E

2Ld

Ld
dmdln@t1v~m!#

~15!

takes into account the contributions of the bulk system, wh

DUd,s~t,L ,L!5
1

2~2p!d (
nÞ0

E
2L1

L1
dm1•••E

2Ld

Ld
dmd

3expS i (
j 51

d

njmjL j D ln@t1v~m!#

~16!

incorporates all contributions due to the finite size of t
system. For further analysis of the Casimir effect, the fi
geometryL3`d21 is the most relevant one. It is obtaine
from Eq. ~16! in the limit L2→`, . . . ,Ld→`, settingL1
[L. In order to simplify the notation, we finally setL1
5L25•••5Ld[L so that

DUd,s~t,L,L!5
1

2~2p!d (
n1Þ0

E
2L

L

dm1•••E
2L

L

dmd

3exp~ in1m1L !ln@t1v~m!#, ~17!

which after two integrations by parts with respect tom1 can
be rewritten as

DUd,s~t,L,L!5DUd,s
(1) ~t,L,L!2L22

1

2~2p!d

3 (
n1Þ0

1

n1
2E

2L

L

dm1•••E
2L

L

dmd

3exp~ in1m1L !]m1

3F ]m1
v~m!

t1v~L,m2 , . . . ,md!
G , ~18!

with
0-5
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DUd,s
(1) ~t,L,L!5L22

p2

6

1

~2p!dE2L

L

dm2•••E
2L

L

dmd

3
]m1

v~m!um15L2]m1
v~m!um152L

t1v~L,m2 , . . . ,md!
.

~19!

The above expression is obtained by the identity transfor
tions of the initial sum, and is valid both for lattice an
off-lattice systems. In the analysis below we show that i
the termDUd,s

(1) (t,L,L) which produces the contributions
on which the statements of Ref.@18# are based.

First, we evaluate this term for lattice systems. If the
teractionsJ(r )>0 are such that they depend only on t
distances between the particles, and these are the only i
actions we are concerned with here, thenJ(k)5J(2k).
Since there is no physical reason for singularities anywh
except atk50, the derivatives ofJ(k) with respect tok
should exist at least for allkÞ0 and therefore]kJ(k)
52]kJ(2k). This holds for lattice and off-lattice system
For lattice systems,J(k) is a periodic function with the prop
erty

J~k12L iei !5J~k!, ~20!

whereei is a unit vector in reciprocal space. This implies th
]kJ(k)50 at the borders of the Brillouin zone and therefo

DUd,s
(1) ~t,L,L![0. ~21!

Note that the above result does not depend on the rang
the interaction—it is true for short-ranged, subleading lon
ranged, as well as for leading long-ranged interactions. As
illustration of the above general arguments, we recall that
exact Fourier transform of the nearest-neighbor interac
on ad-dimensional hypercubic lattice reads

J~k!52J(
j 51

d

coskj[J@2d2v~k!#, ~22!

where

v~k![(
j 51

d

2~12coskj !. ~23!

The general properties ofJ(k) that we have discussed abov
can be easily verified from Eqs.~22! and ~23!.

We now reconsider the quantityDUd,s
(1) (t,L,L) if the ex-

act spectrum is replaced by its asymptotic form, valid in
infrared limit k→0, for all kPB. This is a very common
procedure in the theory of critical phenomena, based on
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general idea that only long wavelength~small k) contribu-
tions are important for the critical properties of the syste
This leads tov(m)5m2, which is the spectrum used in Re
@18#. One immediately obtains

DUd,s
(1) ~t,L,L!5

L

L2

2p2

3

1

~2p!dE2L

L

dm2•••E
2L

L

dmd

3
1

t1L21m2
21•••1md

2

5
Ld22

L2

1

6

1

~2p!d22E21

1

dm2•••E
21

1

dmd

3
1

11t/L21m2
21•••1md

2
. ~24!

We recall that in the spherical limit of theO(n) model, one
hast5j22. Equation~24! exactlyreproduces the nonuniver
sal leading but nonscaling finite-size contribution to the fr
energy as reported in Eq.~16! of Ref. @18# for the corre-
sponding field-theoretic model. Similar contributions ex
also for subleading long-ranged interactions to which
turn in Sec. III. According to the above considerations, su
nonuniversal~cutoff dependent! contributions of the order of
L22 will always appear if

]J~k!

]k1
Uk15LÞ

]J~k!

]k1
U

k152L

. ~25!

Note that only the properties of the Fourier transformJ(k) of
the interaction at the boundary of the setB of allowed k
values are important here. For a field-theoretic model, th
are definitely a matter of definition. For lattice models, the
properties follow automatically. Approximating the spectru
v(k) by its infrared asymptotic behavior leads to an artific
cusplike singularity at the border of the Brillouin zone as
illustrated in Fig. 2. A corresponding approximation for E
~3.11! in Ref. @55# would lead to an incorrect prediction o
the critical finite-size contribution to the free energy@see Eq.
~3.12! in Ref. @55## leading to a vanishing Casimir ampl
tude.

Before we consider how to modify the definition of th
continuous field-theoretic model as to avoid a nonz
DUd,s

(1) (t,L,L), we make some general remarks. First, t
considerations presented above can easily be extended to
geometry of the typeLd2d83`d8, 0<d8<d. Second, in the
above discussion we didnot specify the type of the
interactions—short ranged, leading long ranged, or suble
ing long ranged. This implies that theL22 corrections in
question exist forany type of interaction for periodic bound
ary conditions, provided Eq.~25! is valid. Furthermore, fur-
ther integrations by parts yield additional contributions of t
orderL24, L26, etc. In 2,d,4 dimensions, only the term
0-6
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L22 is important, but ind.4 spurious finite-size terms o
the ordersL22 andL24 will be generated. Finally, we not
that the precise form of the integrand in Eq.~17! was not
used in the above analysis. This implies that spuriousL22

corrections also occur in other quantities such as the sus
tibility @53,54# ~see also the discussion in Appendix G
Ref. @46#!, the specific heat 56, etc. The influence of differe
cutoff types~sharp or smooth! and of the truncation of the
expansion of the Fourier transform of the interaction on
finite-size behavior of the susceptibility has been conside
in detail in Ref.@46#. The only difference with respect to th
free energy is that the susceptibility diverges asLg/n at Tc ,
leaving anyL22 contribution as asmall correction, whereas
the singular part of the free energy behaves asL2d, and
therefore the cutoff dependent term of the orderL22 be-
comesdominantin the critical region ford.2.

Since there is no physical reason for the introduction o
sharpcutoff in thek-space representation of a field-theore
model, one option to avoid artificialL22 contributions is to
implement of asmoothcutoff. Various forms of smooth cut
offs are possible@46,54#. For example, in Ref.@54# a modi-
fied continuum Ginzburg-Landau Hamiltonian has been c
sidered~see also Ref.@57#!:

H5E
V
ddxF1

2
r 0w21

1

2
~“w!21u0~w2!21

1

2L2
~¹2w!2G .

~26!

The last term in Eq.~26! introduces the smooth cutoff whic
is parametrized by a wave numberL. The finite-size effects
of the thermodynamic quantities differ substantially for t
above Hamiltonian and the standard one with a sharp cu
In the framework corresponding to Eq.~26!, the thermody-
namic quantities approach their bulk valueexponentiallyas a
function of L for TÞTc fixed, whereas for the standar
Ginzburg-Landau Hamiltonian with a sharp cutoff the bu
limit is reached according to the power law;L22 for any
temperature. In particular, this has been observed for the
ceptibility @58#, the specific heat@56#, and the free energy
@18#. The effect of a smooth cutoff prodecure on the fini
size behavior of the susceptibility was also discussed in
tail in Ref. @46#, where the aforementioned exponent
finite-size behavior was recovered. As already noticed
Refs.@40,18,54#, the presence of a sharp cutoff is mandato
for the occurrence of the aforementioned nonuniversalL22

contributions to finite-size scaling. For generald.2, it was
also realized that a close relationship exists between a
exponential large-distance behavior of the bulk correlat
function ~generated by the sharp cutoff! and the power-law
finite-size behavior of both the susceptibility aboveTc @40#
and the singular part of the free energy@18#. Here we have
demonstrated that all such finite-size effects arise from
single origin and are unphysical mathematical artifacts
to the imposed singularity ofJ(k) at the boundary of the
allowedk values. This, in turn, generates long-ranged cor
lations in real space. In order to eliminate spurious finite-s
contributions, we propose the replacement@see Eq.~17!#
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DUd,s~t,L,L!→DUd,s~t,L,L!2DUd,s
(1) ~t,L,L!

5
1

2~2p!d (
n1Þ0

E
2L

L

dm1•••E
2L

L

dmd

3exp~ in1m1L !ln@t1v~m!#

2L22
p2

6

1

~2p!dE2L

L

dm2•••E
2L

L

dmd

3
]m1

v~m!um15L2]m1
v~m!um152L

t1v~L,m2 , . . . ,md!

~27!

and the corresponding replacements generated by the de
tives of Eq.~27! with respect to the parametert in the defi-
nition of each model systemregardlessof the implementa-
tion of a sharp cutoff. Within such a scheme, the we
established methods for field-theoretic calculations in
presence of sharp cutoff are preserved. For lattice sys
this is an identity transformation becauseDUd,s

(1) (t,L,L)
[0 as expounded above. Note that the replacements g
by Eq. ~27! and its derivatives with respect tot do not in-
terfere with the treatment of bulk systems, sin
DUd,s

(1) (t,L5`,L)50. They only become important fo
studies of the finite-size scaling behavior of systems
dowed with a sharp cutoff. These replacements remove
artificial cutoff dependent finite-size contributions to th
thermodynamic quantities in the spherical limitn→` of
O(n) models and to one-loop order forO(n) models with
finite n.

III. SYSTEMS WITH SUBLEADING LONG-RANGED
INTERACTIONS

First, we briefly recall the finite-size behavior of system
with subleading long-ranged interactions.

In Refs.@37,46,59#, it was shown that the susceptibility o
a finite system with dispersion interactions, which decay
r 2d2s for large distances, can be written for 2,d,4, 2
,s,4, andd1s,6 in the form

x~ t,L !5Lg/nXx~L/j,bL22s2h!.Lg/n@Xx
sr~L/j!

1bL22s2hXx
lr ~L/j!#, ~28!

where

Xx
sr~x→1`!.Xx

sr,1x2g/n1O„exp~2constx!…. ~29!

For the long-ranged part one has

Xx
lr ~x→1`!.Xx,1

lr x22g/n1s1Xx,2
lr x22g/n2d. ~30!

The amplitudeb is a nonuniversal parameter that can
determined from the Fourier transform of the interactio
The first term of the asymptotic behavior ofXx

lr (x) yields the
bulk corrections to scaling as predicted by Kayser a
Raveche´ @35#, while the second term yields the leadin
0-7
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finite-size correction to the susceptibility forL/j@1. This
second term leads tox(t,L)2x(t,`);t2dn22gL2(d1s),
L/j@1, i.e., the finite-size corrections to the bulk behav
are governed by apower law rather than an exponentia
function of the system sizeL. Finally, we note that for the
physically most important cased1s56 ~e.g.,d5s53 for
nonretarded van der Waals forces ind53), one finds addi-
tional logarithmic corrections in Eq.~28! @37,46#, which can
be incorporated by the replacementXx

lr (x) → Xx
lr ,1(x)ln L

1Xx
lr ,2(x) @37#.
The behavior of the susceptibility outlined above is co

sistent with the behavior of the bulk pair correlation functi
in systems with dispersion forces@37#,

G~r ,t !5r 2(d221h)@g6
sr~r /j!1r 2(s221h)g6

lr ~r /j!#.
~31!

The modified Fisher-Privman@60# finite-size scaling hypoth-
esis for the free energy density in such systems can be
into the form

f s~ t,L !5L2dX~L/j,bL22s2h!

.L2d@Xsr~L/j!1bL22s2hXlr ~L/j!#, ~32!

where Xsr(x→1`).Xsr,1xd1O„exp(2constx)… is the
short-ranged contribution. For the long-ranged contributi
one expectsXlr (x).X1

lr xd1s1h221X2
lr xh22. The first term

in the asymptotic behavior ofXlr yields anew bulk correc-
tion to scalingthat is due to the subleading part of the inte
action ~analogous to the corresponding terms predicted
Kayser and Raveche´ for the susceptibility@35# and observed
in spherical model calculations@46#!. Its temperature depen
dence forT.Tc is given bytdn1(s1h22)n. For L/j@1, the
second term leads to a finite-size contribution of the fo
L2(d1s). As for the finite-size scaling behavior of the su
ceptibility, additional logarithmic corrections have to b
added toXlr for d1s56. Finally, we note that there ma
also be a thirdconstantcontribution to the asymptotic behav
r

in

.

di
di
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ior of Xlr (x) for x@1, which does not appear in the susce
tibility and which leads to aL24ln L finite-size contribution
to the free energy ford5s53.

Equation~32! has been derived in Ref.@18# for the case
h50, where the main focus is set on the discussion of fin
size contributions. Furthermore, the results reported in R
@18# apparently apply only ford1s,6 because no logarith
mic corrections were found. Thus a complete verification
Eq. ~32! is still missing. We now turn to the investigation o
some of the consequences of the assumptions used in
model in Ref.@18#.

We suppose that the interaction potentialJ(r ) is of the
dispersion type as defined by Eq.~6!. The Fourier transform
of such an interaction is

J~k!.J~0!@12v2k21vsks2v4k41O~k6!#

[J~0!2Kv~k!/b, ~33!

wherek5uku, 4.s.2; andJ(0), v2 , vs , andv4 are non-
universal positive constants. The constantJ(0) is the ground
state energy of the system andv(k).k22bks1ck4

1O(k6), where K5bv2J(0), b5vs /v2.0, and c
5v4 /v2.0 are nonuniversal constants. SinceJ(r )>0 and
thusJ(0).J(k) for kÞ0, the values ofb andc are such that
there are no real roots of the equation 12bks221ck250
with respect tok.

The free energy of anO(n) model with an interaction
described by Eq.~6!, in the limit n→`, is given by the
expression

b f ~K,huL ,L!5
1

2
supt.0H 2

h2

Kt
1

1

L13•••3Ld

3(
k

ln@t1v~k!#2KtJ 1
1

2 F ln
K

2p
2

K

v2
G .

~34!

In the presence a sharp cutoff ink space, this leads to
DUd,s
(1) ~t,L,L!5

Ld

L2

1

6

1

~2p!d22E21

1

dm2•••E
21

1

dmd

12
1

2
bsLs22~11u2!s/22112c2L2~11u2!

t1L2~11u2!2bLs~11u2!s/212c2L4~11u2!2
, ~35!
m
ged
ere-
ad-
d-

d-
ons
er-
nts
whereu25m2
21•••1md

2 . This term is missing in Eq.~9! in
Ref. @18#, but it is manifestly present in the case of a sha
cutoff. We therefore conclude that Eq.~9! of Ref. @18# is only
correct within the smooth cutoff procedure, but not with
the sharp cutoff one. As already explained above, Eq.~9! of
Ref. @18# coincides with our Eq.~32! for systems withh
50 andd1s,6 for periodic boundary conditions. In Ref
@18#, it is supposed to be valid also for systems withDirich-
let boundary conditions. However, Dirichlet boundary con
tions are inconsistent with the long-ranged nature of the
persion forces~subleading long-ranged interaction! because
p

-
s-

the ‘‘missing neighbors’’ of the ordering degrees of freedo
at a surface of such a system by the nature of long-ran
interactions generate a long-ranged surface field. We th
fore conclude that the consideration of systems with suble
ing long-range interactions combined with Dirichlet boun
ary conditions as proposed in Ref.@18# is of no physical
relevance. In the following section, we summarize our fin
ings and also comment on the proper boundary conditi
and the expected finite-size behavior of systems with disp
sion forces and real boundaries. We will present argume
as to why we expect this to differ significantly from Eq.~32!.
0-8
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IV. SUMMARY AND CONCLUDING REMARKS

It has been shown in Secs. II and III that nonanalyticit
in the dispersion relationv(k) at the momentum cutoff lead
to a bulk model which has leading and competing lon
ranged interactions in real space. Thus even in the bulk it
peculiar properties such as the two-point correlation funct
given by Eq.~10!. For such a model, finite-size scaling d
veloped for the systems with short-ranged or sublead
long-ranged interactions does not apply from the outset.
are not aware of any physical system governed by suc
type of interaction.

In order to investigate the critical behavior of a mod
system by means of an effective Ginzburg-Landau Ham
tonian ink space, one usually expandsv(k) in the ~infrared!
limit k→0, keeping only the leading term~s!. Divergent mo-
mentum integrals can be regularized by the introduction o
cutoff which is motivated by the presence of a Brillouin zo
~lattice models! or finite particle sizes~continuum models!. If
a sharp cutoff in the momentum space is applied as astrict
feature of an otherwise approximate~expanded! dispersion
relation, the ensuing nonanalyticity ofv(k) at the cutoff
generates long-ranged correlations and finite-size effect
the orderL22. These effects do not occur in actual syste
with short-ranged or subleading long-ranged interactions
therefore they are artificial. In particular, the nonuniver
long-ranged Casimir forces reported in Ref.@18# have no
physical relevance for systems with short-ranged forces.

It is instructive to consider the finite-size behavior of t
free energy in the systems with subleading long-ranged
teractions. As is well known, the free energy decompo
into a sum of a regular and a singular part. In Sec. III
have discussed the finite-size behavior of the singular
for the case of periodic boundary conditions in a film geo
etry. However, the regular part is also important and it h
experimental consequences for the Casimir force. For p
odic boundary conditions, one expects the regular part to
of the orderL24 in the vicinity ofTc . Much more interesting
is the case of a system with real boundaries. This raises
question of proper boundary conditions for such syste
The boundary conditions cannot be of the Dirichlet or Ne
mann type, because the latter are incompatible with the lo
ranged nature of the interactions. Instead, one finds tha
long-ranged interactions generate long-rangedsurface fields
that decay according to a power law away from the surf
into the bulk of the system. The direct~Hamaker! interaction
of the surfaces then generates aL2s contribution to the regu-
lar part of the free energy if the free energy is measured
unit volume ~or a L2s11 contribution if the free energy is
measured per unit area!. This is well known from studies o
wetting phenomena@17#. The contribution to the regular pa
of the free energy due to the action of the surface fields
the ordering degrees of freedom is also of the order ofL2s.
The available renormalization group arguments suggest
the contribution to the singular part should be of the or
L2(d221h)/22s @61,62#. This leads to the followinghypoth-
esis for the singular part of the free energy:

f s~ t,L !5L2dX~L/j,h1LD1 /n,bL22s2h,hsL
(d122h)/22s!,

~36!
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wherehs is a nonuniversal metric factor characterizing t
long-ranged behavior of the surface fields, whileh1 is the
corresponding factor at the surface boundaries. HereD1 is
the critical surface gap exponent of the corresponding s
face universality class. Note that, sinced.2, the term pro-
portional tohs can give contributions that arelarger than that
proportional tob, i.e., the contributions of the surface field
are important and cannot be ignored. In particular, this
important for the quantitave analysis of wetting experime
with critical binary liquid mixtures@50#. The interpretation
of these experimental data@50# is still unresolved. We also
point out that neither Eq.~32! nor Eq. ~36! applies to con-
fined superfluid4He or 3He-4He mixtures@48#, which have
been under investigation in recent experiments@51,52#. For
superfluid 4He, the long-ranged finite-size contributions
the free energy originate from two distinct sources:~i! a
regular contribution from the dispersion forces which coup
to the fluiddensityand are unrelated to the superfluid ord
parameter;~ii ! a singular contribution from the superfluid
order parameter which is generically short ranged in nat
and does not relate to the presence of dispersion forces@48#.
The situation is more complicated in the case of3He-4He
mixtures, where the superfluid transition temperature
pends on the3He concentration, which eventually causes t
superfluid transition to become first order beyond the tricr
cal 3He concentration. The3He concentration does respon
to the dispersion forces and, by virtue of long-ranged surf
fields, long-ranged3He concentration perturbations ma
emerge in a confined3He-4He mixture. Through the depen
dence of the superfluid transition temperatureTl on the 3He
concentration, a long-ranged variation of the local value
Tl will ensue, which in turn imposes a corresponding var
tion of the superfluid density in thermal equilibrium. Fro
the experiment in Ref.@52#, there is robust evidence that th
Dirichlet boundary conditions do not apply for the superflu
order parameter of3He-4He in the tricritical regime, becaus
contrary to the case of pure4He @51# a thickening of the
wetting layer has been observed caused by arepulsivetric-
ritical Casimir force. This observation rules out the pure D
richlet boundary conditions in this case because these
only account forattractive Casimir forces as observed i
pure 4He @48,51#. Furthermore, subdominant long-ranged i
teractions may play a significant role in a finite-size scal
analysis of3He-4He mixtures in the vicinity of the bulk su
perfluid transition. However, the model Hamiltonian of th
system then has to accomodate a second ‘‘noncritical’’ fi
~the 3He concentration! apart from the superfluid order pa
rameter in order to include dispersion forces and long-ran
surface fields in the physically correct way. The construct
of a proper model Hamiltonian, which is a generalization
the standard Ginzburg-Landau Hamiltonian considered h
is beyond the scope of this work.

In conclusion, we remark that we still lack a comple
theoretical description of the Casimir effect in the syste
with subleading long-ranged interactions. Such a descrip
must contain both the influence of surface fields and
long-ranged nature of the interaction potential. Both are
pected to generate important contributions to the critical
havior pertaining to the universality class of systems w
0-9



e
b
r

t
o

R.
or a
l-
e-
the
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short-ranged interaction potentials. Very close toTc the
finite-size behavior should turn out to be that of short-rang
models, but additional finite-size effects are expected to
come dominant forutuL1/n@1. For systems with scalar orde
parameter, these expectations hold both above and below
bulk critical temperature. ForO(n) models one expects tha
Goldstone modes will dominate the finite-size behavior
the systems belowTc .
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